+49 541 9493 0
Kontaktformular
Newsletter

Blog

Die Kunst der passenden Datenhaltung – Data Lake oder Data Warehouse?

Autor:in Maurice Janotta Business Solutions
Maurice Janotta

In Zeiten von wachsendem Interesse an datengetriebenen Technologien wie z.B. Künstlicher Intelligenz, wächst gleichermaßen das Interesse an der optimalen Datenhaltung der benötigten Daten. Doch welche Möglichkeiten haben Sie als Unternehmen, um Ihre Daten zu managen, zu optimieren und zu lagern? In welchen Fällen sollten Sie welche Datenhaltungsoption nutzen? Und wo liegt der Unterschied zwischen einem Data Lake und einem Data Warehouse?

Die Wahl zwischen Data Lake oder Data Warehouse

Als Grundvoraussetzung für den Einsatz von datengetriebenen Technologien wird von vielen Experten die vorgelagerte Umsetzung von leistungsfähigen Big-Data-Infrastrukturen genannt. So ist es für verschiedenste unternehmensinterne Prozesse erfahrungsgemäß notwendig, gleichzeitig auf unterschiedliche Daten aus verschiedenen Systemen zuzugreifen.

Die Basis für die zentralisierte Datenhaltung kann in diesem Fall entweder ein Data Lake oder ein Data Warehouse sein. Im Data Warehouse werden verschiedenste Datentypen aus unterschiedlichen Quellen bereinigt, miteinander harmonisiert und zentral gelagert. Vor allem als vorgelagerte Datenquelle für BI-Systeme, wie z.B. Microsoft Power BI oder IBM Cognos Analytics bietet sich ein Data Warehouse an, um auf Grundlage der vorstrukturierten und sortierten Daten analytische Unternehmensentscheidungen zu treffen.

Die Unterschiede zwischen Data Lake und Data Warehouse

Die Vorteile eines Data Warehouse liegen in der Datenhaltung vor allem im Bereich der Homogenisierung, der Integration von verschiedenen Datentypen und der Strukturierung.

Das Data Lake hingegen greift auf eine unstrukturierte Sammlung von Rohdaten aus verschiedenen Quellsystemen zurück, wodurch es nicht notwendig ist, den analytischen Zweck der Datenhaltung im Vorfeld zu kennen. Die daraus folgende Flexibilität des Data Lakes beschreibt ebenso den größten Unterschied zum Data Warehouse. Während beim Data Warehouse im Vorfeld der Implementierung der analytische Zweck feststehen muss, können die Daten im Data Lake auch nach der Speicherung strukturiert und für Analysezwecke extrahiert werden. 

Dadurch, dass die beiden Datenhaltungssysteme ihre jeweiligen spezifischen Anwendungsbereiche besitzen, lässt sich allerdings auch feststellen, dass eine Kombination der beiden Systeme trotz der bestehenden Unterschiede Ihre Datenhaltung auf ein neues Level katapultieren würde.

Diese Artikel könnten Sie ebenfalls interessieren:

AllgemeinNews

Bestandsoptimierung so einfach wie nie!

Bestandsoptimierung so einfach wie nie!

Die richtigen Artikel zur richtigen Zeit am richtigen Ort wissen: Das Credo der Lagerlogistik klingt in der Theorie wesentlich einfacher, als es in der Praxis umzusetzen ist. Schließlich bedingen unter anderem saisonale und weitere äußere Einflüsse die Nachfrage – schnell kann es im Lager dann zu einem Überbestand oder aber zu gähnender Leere kommen, wenn der Bedarf im Voraus nicht genau prognostiziert und die Bestände nicht entsprechend aufgestockt wurden.
AllgemeinKarriere

Flexibles Arbeiten von überall aus

Flexibles Arbeiten von überall aus

Hi, ich bin Johann und meine liebe Kollegin Svenja aus dem Marketing hat mich gefragt, ob ich mir vorstellen kann, einen kleinen Blogbeitrag zu schreiben, in dem ich über meine Erfahrung mit dem „Flexi-Office“ berichten kann. Wozu ich natürlich ja gesagt habe. Also fangen wir an.
Kontakt

Vereinbaren Sie ein
unverbindliches Erstgespräch

*“ zeigt erforderliche Felder an

Dieses Feld wird bei der Anzeige des Formulars ausgeblendet
Newsletter
Dieses Feld dient zur Validierung und sollte nicht verändert werden.

Webcastaufzeichnung

*“ zeigt erforderliche Felder an

Newsletteranmeldung
Dieses Feld dient zur Validierung und sollte nicht verändert werden.

Whitepaper herunterladen

*“ zeigt erforderliche Felder an

Newsletteranmeldung
Dieses Feld dient zur Validierung und sollte nicht verändert werden.